The Multiplier Algebra of a Nuclear Quasidiagonal C-algebra

نویسنده

  • P. W. NG
چکیده

We give the nuclear analogue of Dadarlat’s characterization of exact quasidiagonal C∗-algebras. Specifically, we prove the following: Theorem 0.1. Let A be a unital separable simple C∗-algebra. Then the following conditions are equivalent: i) A is nuclear and quasidiagonal. ii) A has the stabilization principle. iii) If π : A → M(A ⊗ K) is a unital, purely large ∗-homomorphism, then the image π(A) can be locally approximated by finite-dimensional ∗-subalgebras of M(A⊗K). keywords: C-algebra, nuclear, stably finite, quasidiagonal, absorbing extensions, purely large extensions, Lin extension, Kasparov extension, amenable group, multiplier algebras, strict topology. NUCLEAR AND QUASIDIAGONAL 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible Representations of Inner Quasidiagonal C*-algebras

It is shown that a separable C*-algebra is inner quasidiagonal if and only if it has a separating family of quasidiagonal irreducible representations. As a consequence, a separable C*-algebra is a strong NF algebra if and only if it is nuclear and has a separating family of quasidiagonal irreducible representations. We also obtain some permanence properties of the class of inner quasidiagonal C...

متن کامل

MULTIPLIERS AND THEIR APPLICATIONS IN EARTHQUAKE ENGINEERING

In this paper we shall study the multipliers on Banach algebras and We prove some results concerning Arens regularity and amenability of the Banach algebra M(A) of all multipliers on a given Banach algebra A. We also show that, under special hypotheses, each Jordan multiplier on a Banach algebra without order is a multiplier. Finally, we present some applications of m...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

On the Approximation of Quasidiagonal C*-Algebras

Let A be a separable exact quasidiagonal C*-algebra. Suppose that ?: A L(H) is a faithful representation whose image does not contain nonzero compact operators. Then there exists a sequence .n : A L(H) of completely positive contractions such that &?(a)&.n(a)& 0 for all a # A, and the C*-algebra generated by .n(A) is finite dimensional for each n. As an application it is shown that if the C*-al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005